Deep Multi-label Hashing for Large-Scale Visual Search Based on Semantic Graph
نویسندگان
چکیده
Huge volumes of images are aggregated over time because many people upload their favorite images to various social websites such as Flickr and share them with their friends. Accordingly, visual search from large scale image databases is getting more and more important. Hashing is an efficient technique to large-scale visual content search, and learning-based hashing approaches have achieved great success due to recent advancements of deep learning. However, most existing deep hashing methods focus on single label images, where hash codes cannot well preserve semantic similarity of images. In this paper, we propose a novel framework, deep multi-label hashing (DMLH) based on a semantic graph, which consists of three key components: (i) Image labels, semantically similar in terms of co-occurrence relationship, are classified in such a way that similar labels are in the same cluster. This helps to provide accurate ground truth for hash learning. (ii) A deep model is trained to simultaneously generate hash code and feature vector of images, based on which multi-label image databases are organized by hash tables. This model has excellent capability in improving retrieval speed meanwhile preserving semantic similarity among images. (iii) A combination of hash code based coarse search and feature vector based fine image ranking is used to provide an efficient and accurate retrieval. Extensive experiments over several large image datasets confirm that the proposed DMLH method outperforms state-of-the-art supervised and unsupervised image retrieval approaches, with a gain ranging from 6.25% to 38.9% in terms of mean average precision.
منابع مشابه
Instance Similarity Deep Hashing for Multi-Label Image Retrieval
Hash coding has been widely used in the approximate nearest neighbor search for large-scale image retrieval. Recently, many deep hashing methods have been proposed and shown largely improved performance over traditional featurelearning-based methods. Most of these methods examine the pairwise similarity on the semantic-level labels, where the pairwise similarity is generally defined in a hard-a...
متن کاملGuest Editorial: Big Media Data: Understanding, Search, and Mining (Part 2)
BIG media data is a new research area, and has been attracting a lot of research interests in both industry and academia. In the first part of this special issue, we have introduced three papers on large scale similar image search, image search quality improvement, and semi-supervised multi-label image annotation. This second part of this special issue includes two examples on large scale visua...
متن کاملScalable Image Annotation by Summarizing Training Samples into Labeled Prototypes
By increasing the number of images, it is essential to provide fast search methods and intelligent filtering of images. To handle images in large datasets, some relevant tags are assigned to each image to for describing its content. Automatic Image Annotation (AIA) aims to automatically assign a group of keywords to an image based on visual content of the image. AIA frameworks have two main sta...
متن کاملDeep Supervised Hashing with Triplet Labels
Hashing is one of the most popular and powerful approximate nearest neighbor search techniques for large-scale image retrieval. Most traditional hashing methods first represent images as off-the-shelf visual features and then produce hashing codes in a separate stage. However, off-the-shelf visual features may not be optimally compatible with the hash code learning procedure, which may result i...
متن کاملDeep Triplet Supervised Hashing
Hashing is one of the most popular and powerful approximate nearest neighbor search techniques for large-scale image retrieval. Most traditional hashing methods first represent images as off-the-shelf visual features and then produce hash codes in a separate stage. However, off-the-shelf visual features may not be optimally compatible with the hash code learning procedure, which may result in s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017